Public Member Functions
nvidia::apex::FractureToolsAPI Class Reference

#include <FractureToolsAPI.h>

List of all members.

Public Member Functions

virtual FractureTools::CutoutSetcreateCutoutSet ()=0
virtual void buildCutoutSet (FractureTools::CutoutSet &cutoutSet, const uint8_t *pixelBuffer, uint32_t bufferWidth, uint32_t bufferHeight, float snapThreshold, bool periodic)=0
virtual bool calculateCutoutUVMapping (const nvidia::ExplicitRenderTriangle &triangle, PxMat33 &theMapping)=0
virtual bool calculateCutoutUVMapping (nvidia::ExplicitHierarchicalMesh &hMesh, const PxVec3 &targetDirection, PxMat33 &theMapping)=0
virtual bool createVoronoiSplitMesh (nvidia::ExplicitHierarchicalMesh &hMesh, nvidia::ExplicitHierarchicalMesh &iHMeshCore, bool exportCoreMesh, int32_t coreMeshImprintSubmeshIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureVoronoiDesc &desc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0
virtual uint32_t createVoronoiSitesInsideMesh (nvidia::ExplicitHierarchicalMesh &hMesh, PxVec3 *siteBuffer, uint32_t *siteChunkIndices, uint32_t siteCount, uint32_t *randomSeed, uint32_t *microgridSize, BSPOpenMode::Enum meshMode, nvidia::IProgressListener &progressListener, uint32_t chunkIndex=0xFFFFFFFF)=0
virtual uint32_t createScatterMeshSites (uint8_t *meshIndices, PxMat44 *relativeTransforms, uint32_t *chunkMeshStarts, uint32_t scatterMeshInstancesBufferSize, nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t targetChunkCount, const uint16_t *targetChunkIndices, uint32_t *randomSeed, uint32_t scatterMeshAssetCount, nvidia::RenderMeshAsset **scatterMeshAssets, const uint32_t *minCount, const uint32_t *maxCount, const float *minScales, const float *maxScales, const float *maxAngles)=0
virtual void visualizeVoronoiCells (nvidia::RenderDebugInterface &debugRender, const PxVec3 *sites, uint32_t siteCount, const uint32_t *cellColors, uint32_t cellColorCount, const PxBounds3 &bounds, uint32_t cellIndex=0xFFFFFFFF)=0
virtual bool buildExplicitHierarchicalMesh (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::ExplicitRenderTriangle *meshTriangles, uint32_t meshTriangleCount, const nvidia::ExplicitSubmeshData *submeshData, uint32_t submeshCount, uint32_t *meshPartition=NULL, uint32_t meshPartitionCount=0, int32_t *parentIndices=NULL, uint32_t parentIndexCount=0)=0
virtual void setBSPTolerances (float linearTolerance, float angularTolerance, float baseTolerance, float clipTolerance, float cleaningTolerance)=0
virtual void setBSPBuildParameters (float logAreaSigmaThreshold, uint32_t testSetSize, float splitWeight, float imbalanceWeight)=0
virtual bool buildExplicitHierarchicalMeshFromRenderMeshAsset (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::RenderMeshAsset &renderMeshAsset, uint32_t maxRootDepth=UINT32_MAX)=0
virtual bool buildExplicitHierarchicalMeshFromDestructibleAsset (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::DestructibleAsset &destructibleAsset, uint32_t maxRootDepth=UINT32_MAX)=0
virtual bool createHierarchicallySplitMesh (nvidia::ExplicitHierarchicalMesh &hMesh, nvidia::ExplicitHierarchicalMesh &iHMeshCore, bool exportCoreMesh, int32_t coreMeshImprintSubmeshIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureSliceDesc &desc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0
virtual bool createChippedMesh (nvidia::ExplicitHierarchicalMesh &hMesh, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureCutoutDesc &desc, const FractureTools::CutoutSet &iCutoutSet, const FractureTools::FractureSliceDesc &sliceDesc, const FractureTools::FractureVoronoiDesc &voronoiDesc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0
virtual bool hierarchicallySplitChunk (nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t chunkIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureSliceDesc &desc, const CollisionDesc &collisionDesc, uint32_t *randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0
virtual bool voronoiSplitChunk (nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t chunkIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureVoronoiDesc &desc, const CollisionDesc &collisionDesc, uint32_t *randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0
virtual bool buildSliceMesh (nvidia::IntersectMesh &intersectMesh, nvidia::ExplicitHierarchicalMesh &referenceMesh, const PxPlane &slicePlane, const FractureTools::NoiseParameters &noiseParameters, uint32_t randomSeed)=0
virtual
nvidia::ExplicitHierarchicalMesh * 
createExplicitHierarchicalMesh ()=0
virtual
nvidia::ExplicitHierarchicalMesh::ConvexHull * 
createExplicitHierarchicalMeshConvexHull ()=0

Detailed Description

Fracture tools API


Member Function Documentation

virtual void nvidia::apex::FractureToolsAPI::buildCutoutSet ( FractureTools::CutoutSet cutoutSet,
const uint8_t *  pixelBuffer,
uint32_t  bufferWidth,
uint32_t  bufferHeight,
float  snapThreshold,
bool  periodic 
) [pure virtual]

Builds a cutout set (which must have been initially created by createCutoutSet()). Uses a bitmap described by pixelBuffer, bufferWidth, and bufferHeight. Each pixel is represented by one byte in the buffer.

Parameters:
cutoutSetthe CutoutSet to build
pixelBufferpointer to be beginning of the pixel buffer
bufferWidththe width of the buffer in pixels
bufferHeightthe height of the buffer in pixels
snapThresholdthe pixel distance at which neighboring cutout vertices and segments may be fudged into alignment.
periodicwhether or not to use periodic boundary conditions when creating cutouts from the map
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMesh ( nvidia::ExplicitHierarchicalMesh &  iHMesh,
const nvidia::ExplicitRenderTriangle *  meshTriangles,
uint32_t  meshTriangleCount,
const nvidia::ExplicitSubmeshData *  submeshData,
uint32_t  submeshCount,
uint32_t *  meshPartition = NULL,
uint32_t  meshPartitionCount = 0,
int32_t *  parentIndices = NULL,
uint32_t  parentIndexCount = 0 
) [pure virtual]

Builds a new ExplicitHierarchicalMesh from an array of triangles.

Parameters:
iHMeshthe ExplicitHierarchicalMesh to build
meshTrianglespointer to array of ExplicitRenderTriangles which make up the mesh
meshTriangleCountthe size of the meshTriangles array
submeshDatapointer to array of ExplicitSubmeshData, describing the submeshes
submeshCountthe size of the submeshData array
meshPartitionif not NULL, an array of size meshPartitionCount, giving the end elements of contiguous subsets of meshTriangles. If meshPartition is NULL, one partition is assumed. When there is one partition, these triangles become the level 0 part. When there is more than one partition, these triangles become level 1 parts, the behavior is determined by firstPartitionIsDepthZero (see below).
meshPartitionCountif meshPartition is not NULL, this is the size of the meshPartition array.
parentIndicesif not NULL, the parent indices for each chunk (corresponding to a partition in the mesh partition).
parentIndexCountthe size of the parentIndices array. This does not need to match meshPartitionCount. If a mesh partition has an index beyond the end of parentIndices, then the parentIndex is considered to be 0. Therefore, if parentIndexCount = 0, all parents are 0 and so all chunks created will be depth 1. This will cause a depth 0 chunk to be created that is the aggregate of the depth 1 chunks. If parentIndexCount > 0, then the depth-0 chunk must have a parentIndex of -1. To reproduce the effect of the old parameter 'firstPartitionIsDepthZero' = true, set parentIndices to the address of a int32_t containing the value -1, and set parentIndexCount = 1. To reproduce the effect of the old parameter 'firstPartitionIsDepthZero' = false, set parentIndexCount = 0. Note: if parent indices are given, the first one must be -1, and *only* that index may be negative. That is, there may be only one depth-0 mesh and it must be the first mesh.
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMeshFromDestructibleAsset ( nvidia::ExplicitHierarchicalMesh &  iHMesh,
const nvidia::DestructibleAsset &  destructibleAsset,
uint32_t  maxRootDepth = UINT32_MAX 
) [pure virtual]

Builds the root ExplicitHierarchicalMesh from an DestructibleAsset. Since an DestructibleAsset contains hierarchy information, the explicit mesh formed will have this hierarchy structure.

Parameters:
iHMeshthe ExplicitHierarchicalMesh to build
destructibleAssetinput Destructible asset
maxRootDepthcap the root depth at this value. Re-fracturing of the mesh will occur at this depth. Default = UINT32_MAX
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMeshFromRenderMeshAsset ( nvidia::ExplicitHierarchicalMesh &  iHMesh,
const nvidia::RenderMeshAsset &  renderMeshAsset,
uint32_t  maxRootDepth = UINT32_MAX 
) [pure virtual]

Builds the root ExplicitHierarchicalMesh from an RenderMeshAsset. Since an DestructibleAsset contains no hierarchy information, the input mesh must have only one part.

Parameters:
iHMeshthe ExplicitHierarchicalMesh to build
renderMeshAssetinput RenderMesh asset
maxRootDepthcap the root depth at this value. Re-fracturing of the mesh will occur at this depth. Default = UINT32_MAX
virtual bool nvidia::apex::FractureToolsAPI::buildSliceMesh ( nvidia::IntersectMesh &  intersectMesh,
nvidia::ExplicitHierarchicalMesh &  referenceMesh,
const PxPlane &  slicePlane,
const FractureTools::NoiseParameters noiseParameters,
uint32_t  randomSeed 
) [pure virtual]

Builds a mesh used for slice fracturing, given the noise parameters and random seed. This function is mostly intended for visualization - to give the user a "typical" slice surface used for fracturing.

virtual bool nvidia::apex::FractureToolsAPI::calculateCutoutUVMapping ( nvidia::ExplicitHierarchicalMesh &  hMesh,
const PxVec3 &  targetDirection,
PxMat33 &  theMapping 
) [pure virtual]

Uses the passed-in target direction to find the best triangle in the root mesh with normal near the given targetDirection. If triangles exist with normals within one degree of the given target direction, then one with the greatest area of such triangles is used. Otherwise, the triangle with normal closest to the given target direction is used. The resulting triangle is used to calculate a UV mapping as in the function calculateCutoutUVMapping (above).

The assumption is that there exists a single mapping for all triangles on a specified face, for this feature to be useful.

Parameters:
hMeshthe explicit mesh with well rectangle-shaped faces
targetDirectionthe target face's normal
theMappingresulted mapping, composed by an affine transformation and a rotation
virtual bool nvidia::apex::FractureToolsAPI::calculateCutoutUVMapping ( const nvidia::ExplicitRenderTriangle &  triangle,
PxMat33 &  theMapping 
) [pure virtual]

Calculate the mapping between a cutout fracture map and a given triangle. The result is a 3 by 3 matrix M composed by an affine transformation and a rotation, we can get the 3-D projection for a texture coordinate pair (u,v) with such a formula: (x,y,z) = M*PxVec3(u,v,1)

Parameters:
trianglethe target face's normal
theMappingresulted mapping, composed by an affine transformation and a rotation
virtual bool nvidia::apex::FractureToolsAPI::createChippedMesh ( nvidia::ExplicitHierarchicalMesh &  hMesh,
const FractureTools::MeshProcessingParameters meshProcessingParams,
const FractureTools::FractureCutoutDesc desc,
const FractureTools::CutoutSet iCutoutSet,
const FractureTools::FractureSliceDesc sliceDesc,
const FractureTools::FractureVoronoiDesc voronoiDesc,
const CollisionDesc collisionDesc,
uint32_t  randomSeed,
nvidia::IProgressListener &  progressListener,
volatile bool *  cancel = NULL 
) [pure virtual]

Chips the mesh in chunk[0], forming a hierarchy of fractured meshes in chunks[1...]

Parameters:
hMeshthe mesh to split
meshProcessingParamsdescribes generic mesh processing directives
descdescribes the slicing surfaces (see FractureCutoutDesc)
iCutoutSetthe cutout set to use for fracturing (see CutoutSet)
sliceDescused if desc.chunkFracturingMethod = SliceFractureCutoutChunks
voronoiDescused if desc.chunkFracturingMethod = VoronoiFractureCutoutChunks
collisionDescconvex hulls will be generated for each chunk using the method. See CollisionDesc.
randomSeedseed for the random number generator, to ensure reproducibility.
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
cancelif not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
Returns:
returns true if successful.
virtual FractureTools::CutoutSet* nvidia::apex::FractureToolsAPI::createCutoutSet ( ) [pure virtual]

Instantiates a blank CutoutSet

virtual nvidia::ExplicitHierarchicalMesh* nvidia::apex::FractureToolsAPI::createExplicitHierarchicalMesh ( ) [pure virtual]

Instantiates an ExplicitHierarchicalMesh

virtual nvidia::ExplicitHierarchicalMesh::ConvexHull* nvidia::apex::FractureToolsAPI::createExplicitHierarchicalMeshConvexHull ( ) [pure virtual]
virtual bool nvidia::apex::FractureToolsAPI::createHierarchicallySplitMesh ( nvidia::ExplicitHierarchicalMesh &  hMesh,
nvidia::ExplicitHierarchicalMesh &  iHMeshCore,
bool  exportCoreMesh,
int32_t  coreMeshImprintSubmeshIndex,
const FractureTools::MeshProcessingParameters meshProcessingParams,
const FractureTools::FractureSliceDesc desc,
const CollisionDesc collisionDesc,
uint32_t  randomSeed,
nvidia::IProgressListener &  progressListener,
volatile bool *  cancel = NULL 
) [pure virtual]

Splits the mesh in chunk[0], forming a hierarchy of fractured meshes in chunks[1...]

Parameters:
hMeshthe mesh to split
iHMeshCoreif this mesh is not empty, chunk 0 will be used as an indestructible "core" of the fractured mesh. That is, it will be subtracted from hMesh, and placed at level 1 of the hierarchy. The remainder of hMesh will be split as usual, creating chunks at level 1 (and possibly deeper).
exportCoreMeshif true, a core mesh chunk will be created from iHMeshCore
coreMeshImprintSubmeshIndexif this is < 0, use the core mesh materials (was applyCoreMeshMaterialToNeighborChunks). Otherwise, use the given submesh
meshProcessingParamsdescribes generic mesh processing directives
descdescribes the slicing surfaces (see FractureSliceDesc)
collisionDescconvex hulls will be generated for each chunk using the method. See CollisionDesc.
randomSeedseed for the random number generator, to ensure reproducibility.
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
cancelif not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
Returns:
returns true if successful.
virtual uint32_t nvidia::apex::FractureToolsAPI::createScatterMeshSites ( uint8_t *  meshIndices,
PxMat44 *  relativeTransforms,
uint32_t *  chunkMeshStarts,
uint32_t  scatterMeshInstancesBufferSize,
nvidia::ExplicitHierarchicalMesh &  hMesh,
uint32_t  targetChunkCount,
const uint16_t *  targetChunkIndices,
uint32_t *  randomSeed,
uint32_t  scatterMeshAssetCount,
nvidia::RenderMeshAsset **  scatterMeshAssets,
const uint32_t *  minCount,
const uint32_t *  maxCount,
const float *  minScales,
const float *  maxScales,
const float *  maxAngles 
) [pure virtual]

Creates scatter mesh sites randomly distributed on the mesh.

Parameters:
meshIndicesuser-allocated array of size scatterMeshInstancesBufferSize which will be filled in by this function, giving the scatter mesh index used
relativeTransformsuser-allocated array of size scatterMeshInstancesBufferSize which will be filled in by this function, giving the chunk-relative transform for each chunk instance
chunkMeshStartsuser-allocated array which will be filled in with offsets into the meshIndices and relativeTransforms array. For a chunk indexed by i, the corresponding range [chunkMeshStart[i], chunkMeshStart[i+1]-1] in meshIndices and relativeTransforms is used. NOTE*: chunkMeshStart array must be of at least size N+1, where N is the number of chunks in the base explicit hierarchical mesh.
scatterMeshInstancesBufferSizethe size of meshIndices and relativeTransforms array.
scatterMeshInstancesBufferSizethe size of meshIndices and relativeTransforms array.
hMeshthe mesh in which to distribute sites
targetChunkCounthow many chunks are in the array targetChunkIndices
targetChunkIndicesan array of chunk indices which are candidates for scatter meshes. The elements in the array chunkIndices will come from this array
randomSeedpointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded.
scatterMeshAssetCountthe number of different scatter meshes (not instances). Should not exceed 255. If scatterMeshAssetCount > 255, only the first 255 will be used.
scatterMeshAssetsan array of size scatterMeshAssetCount, of the render mesh assets which will be used for the scatter meshes
minCountan array of size scatterMeshAssetCount, giving the minimum number of instances to place for each mesh
maxCountan array of size scatterMeshAssetCount, giving the maximum number of instances to place for each mesh
minScalesan array of size scatterMeshAssetCount, giving the minimum scale to apply to each scatter mesh
maxScalesan array of size scatterMeshAssetCount, giving the maximum scale to apply to each scatter mesh
maxAnglesan array of size scatterMeshAssetCount, giving a maximum deviation angle (in degrees) from the surface normal to apply to each scatter mesh

return value the number of instances placed in indices and relativeTransforms (will not exceed scatterMeshInstancesBufferSize)

virtual uint32_t nvidia::apex::FractureToolsAPI::createVoronoiSitesInsideMesh ( nvidia::ExplicitHierarchicalMesh &  hMesh,
PxVec3 *  siteBuffer,
uint32_t *  siteChunkIndices,
uint32_t  siteCount,
uint32_t *  randomSeed,
uint32_t *  microgridSize,
BSPOpenMode::Enum  meshMode,
nvidia::IProgressListener &  progressListener,
uint32_t  chunkIndex = 0xFFFFFFFF 
) [pure virtual]

Generates a set of uniformly distributed points in the interior of the root mesh.

Parameters:
hMeshthe mesh in which to distribute sites
siteBufferan array of PxVec3, at least the size of siteCount
siteChunkIndicesif not NULL, then must be at least the size of siteCount. siteCount indices will be written to this buffer, associating each site with a chunk that contains it.
siteCountthe number of points to write into siteBuffer
randomSeedpointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded.
microgridSizepointer to a grid size used for BSP creation. If NULL, the default settings will be used.
meshModeOpen mesh handling. Modes: Automatic, Closed, Open (see BSPOpenMode)
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
chunkIndexIf this is a valid index, the voronoi sites will only be created within the volume of the indexed chunk. Otherwise, the sites will be created within each of the root-level chunks. Default value is an invalid index.
Returns:
returns the number of sites actually created (written to siteBuffer and siteChunkIndices). This may be less than the number of sites requested if site placement fails.
virtual bool nvidia::apex::FractureToolsAPI::createVoronoiSplitMesh ( nvidia::ExplicitHierarchicalMesh &  hMesh,
nvidia::ExplicitHierarchicalMesh &  iHMeshCore,
bool  exportCoreMesh,
int32_t  coreMeshImprintSubmeshIndex,
const FractureTools::MeshProcessingParameters meshProcessingParams,
const FractureTools::FractureVoronoiDesc desc,
const CollisionDesc collisionDesc,
uint32_t  randomSeed,
nvidia::IProgressListener &  progressListener,
volatile bool *  cancel = NULL 
) [pure virtual]

Splits the mesh in chunk[0], forming fractured pieces chunks[1...] using Voronoi decomposition fracturing.

Parameters:
hMeshthe mesh to split
iHMeshCoreif this mesh is not empty, chunk 0 will be used as an indestructible "core" of the fractured mesh. That is, it will be subtracted from hMesh, and placed at level 1 of the hierarchy. The remainder of hMesh will be split as usual, creating chunks at level 1 (and possibly deeper).
exportCoreMeshif true, a core mesh chunk will be created from iHMeshCore
coreMeshImprintSubmeshIndexif this is < 0, use the core mesh materials (was applyCoreMeshMaterialToNeighborChunks). Otherwise, use the given submesh
meshProcessingParamsdescribes generic mesh processing directives
descdescribes the voronoi splitting parameters surfaces (see FractureVoronoiDesc)
collisionDescconvex hulls will be generated for each chunk using the method. See CollisionDesc.
randomSeedseed for the random number generator, to ensure reproducibility.
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
cancelif not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
Returns:
true if successful.
virtual bool nvidia::apex::FractureToolsAPI::hierarchicallySplitChunk ( nvidia::ExplicitHierarchicalMesh &  hMesh,
uint32_t  chunkIndex,
const FractureTools::MeshProcessingParameters meshProcessingParams,
const FractureTools::FractureSliceDesc desc,
const CollisionDesc collisionDesc,
uint32_t *  randomSeed,
nvidia::IProgressListener &  progressListener,
volatile bool *  cancel = NULL 
) [pure virtual]

Splits the chunk in chunk[chunkIndex], forming a hierarchy of fractured chunks using slice-mode fracturing. The chunks will be rearranged so that they are in breadth-first order.

Parameters:
hMeshthe ExplicitHierarchicalMesh to act upon
chunkIndexindex of chunk to be split
meshProcessingParamsused to create a BSP for this chunk
descdescribes the slicing surfaces (see FractureSliceDesc)
collisionDescconvex hulls will be generated for each chunk using the method. See CollisionDesc.
randomSeedpointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded.
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
cancelif not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
Returns:
returns true if successful.
virtual void nvidia::apex::FractureToolsAPI::setBSPBuildParameters ( float  logAreaSigmaThreshold,
uint32_t  testSetSize,
float  splitWeight,
float  imbalanceWeight 
) [pure virtual]

Set the parameters used in BSP building operations.

Parameters:
logAreaSigmaThresholdAt each step in the tree building process, the surface with maximum triangle area is compared to the other surface triangle areas. If the maximum area surface is far from the "typical" set of surface areas, then that surface is chosen as the next splitting plane. Otherwise, a random test set is chosen and a winner determined based upon the weightings below. The value logAreaSigmaThreshold determines how "atypical" the maximum area surface must be to be chosen in this manner. Default value = 2.0.
testSetSizeLarger values of testSetSize may find better BSP trees, but will take more time to create. testSetSize = 0 is treated as infinity (all surfaces will be tested for each branch). Default value = 10.
splitWeightHow much to weigh the relative number of triangle splits when searching for a BSP surface. Default value = 0.5.
imbalanceWeightHow much to weigh the relative triangle imbalance when searching for a BSP surface. Default value = 0.0.
virtual void nvidia::apex::FractureToolsAPI::setBSPTolerances ( float  linearTolerance,
float  angularTolerance,
float  baseTolerance,
float  clipTolerance,
float  cleaningTolerance 
) [pure virtual]

Set the tolerances used in CSG calculations with BSPs.

Parameters:
linearTolerancerelative (to mesh size) tolerance used with angularTolerance to determine coplanarity. Default = 1.0e-4.
angularToleranceused with linearTolerance to determine coplanarity. Default = 1.0e-3
baseTolerancerelative (to mesh size) tolerance used for spatial partitioning
clipTolerancerelative (to mesh size) tolerance used when clipping triangles for CSG mesh building operations. Default = 1.0e-4.
cleaningTolerancerelative (to mesh size) tolerance used when cleaning the out put mesh generated from the toMesh() function. Default = 1.0e-7.
virtual void nvidia::apex::FractureToolsAPI::visualizeVoronoiCells ( nvidia::RenderDebugInterface &  debugRender,
const PxVec3 *  sites,
uint32_t  siteCount,
const uint32_t *  cellColors,
uint32_t  cellColorCount,
const PxBounds3 &  bounds,
uint32_t  cellIndex = 0xFFFFFFFF 
) [pure virtual]

Utility to visualize Voronoi cells for a given set of sites.

debugRender rendering object which will receive the drawing primitives associated with this cell visualization sites an array of Voronoi cell sites, of length siteCount siteCount the number of Voronoi cell sites (length of sites array) cellColors an optional array of colors (see RenderDebug for format) for the cells. If NULL, the white (0xFFFFFFFF) color will be used. If not NULL, this (of length cellColorCount) is used to color the cell graphics. The number cellColorCount need not match siteCount. If cellColorCount is less than siteCount, the cell colors will cycle. That is, site N gets cellColor[NcellColorCount]. cellColorCount the number of cell colors (the length of cellColors array) bounds defines an axis-aligned bounding box which clips the visualization, since some cells extend to infinity cellIndex if this is a valid index (cellIndex < siteCount), then only the cell corresponding to sites[cellIndex] will be drawn. Otherwise, all cells will be drawn.

virtual bool nvidia::apex::FractureToolsAPI::voronoiSplitChunk ( nvidia::ExplicitHierarchicalMesh &  hMesh,
uint32_t  chunkIndex,
const FractureTools::MeshProcessingParameters meshProcessingParams,
const FractureTools::FractureVoronoiDesc desc,
const CollisionDesc collisionDesc,
uint32_t *  randomSeed,
nvidia::IProgressListener &  progressListener,
volatile bool *  cancel = NULL 
) [pure virtual]

Splits the chunk in chunk[chunkIndex], forming fractured chunks using Voronoi decomposition fracturing. The chunks will be rearranged so that they are in breadth-first order.

Parameters:
hMeshthe ExplicitHierarchicalMesh to act upon
chunkIndexindex of chunk to be split
meshProcessingParams,:describes generic mesh processing directives
descdescribes the voronoi splitting parameters surfaces (see FractureVoronoiDesc)
collisionDescconvex hulls will be generated for each chunk using the method. See CollisionDesc.
randomSeedpointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded.
progressListenerThe user must instantiate an IProgressListener, so that this function may report progress of this operation
cancelif not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
Returns:
returns true if successful.

The documentation for this class was generated from the following file:

Generated on Sat Dec 1 2018 15:51:53

Copyright © 2012-2018 NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050 U.S.A. All rights reserved.