PxMat33.h
Go to the documentation of this file.
1 //
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions
4 // are met:
5 // * Redistributions of source code must retain the above copyright
6 // notice, this list of conditions and the following disclaimer.
7 // * Redistributions in binary form must reproduce the above copyright
8 // notice, this list of conditions and the following disclaimer in the
9 // documentation and/or other materials provided with the distribution.
10 // * Neither the name of NVIDIA CORPORATION nor the names of its
11 // contributors may be used to endorse or promote products derived
12 // from this software without specific prior written permission.
13 //
14 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
15 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 //
26 // Copyright (c) 2008-2018 NVIDIA Corporation. All rights reserved.
27 // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
28 // Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
29 
30 #ifndef PXFOUNDATION_PXMAT33_H
31 #define PXFOUNDATION_PXMAT33_H
32 
36 #include "foundation/PxVec3.h"
37 #include "foundation/PxQuat.h"
38 
39 #if !PX_DOXYGEN
40 namespace physx
41 {
42 #endif
43 
90 class PxMat33
91 {
92  public:
95  {
96  }
97 
100  : column0(1.0f, 0.0f, 0.0f), column1(0.0f, 1.0f, 0.0f), column2(0.0f, 0.0f, 1.0f)
101  {
102  PX_UNUSED(r);
103  }
104 
106  PX_CUDA_CALLABLE PX_INLINE PxMat33(PxZERO r) : column0(0.0f), column1(0.0f), column2(0.0f)
107  {
108  PX_UNUSED(r);
109  }
110 
112  PX_CUDA_CALLABLE PxMat33(const PxVec3& col0, const PxVec3& col1, const PxVec3& col2)
113  : column0(col0), column1(col1), column2(col2)
114  {
115  }
116 
119  : column0(r, 0.0f, 0.0f), column1(0.0f, r, 0.0f), column2(0.0f, 0.0f, r)
120  {
121  }
122 
124  explicit PX_CUDA_CALLABLE PX_INLINE PxMat33(float values[])
125  : column0(values[0], values[1], values[2])
126  , column1(values[3], values[4], values[5])
127  , column2(values[6], values[7], values[8])
128  {
129  }
130 
133  {
134  const float x = q.x;
135  const float y = q.y;
136  const float z = q.z;
137  const float w = q.w;
138 
139  const float x2 = x + x;
140  const float y2 = y + y;
141  const float z2 = z + z;
142 
143  const float xx = x2 * x;
144  const float yy = y2 * y;
145  const float zz = z2 * z;
146 
147  const float xy = x2 * y;
148  const float xz = x2 * z;
149  const float xw = x2 * w;
150 
151  const float yz = y2 * z;
152  const float yw = y2 * w;
153  const float zw = z2 * w;
154 
155  column0 = PxVec3(1.0f - yy - zz, xy + zw, xz - yw);
156  column1 = PxVec3(xy - zw, 1.0f - xx - zz, yz + xw);
157  column2 = PxVec3(xz + yw, yz - xw, 1.0f - xx - yy);
158  }
159 
162  : column0(other.column0), column1(other.column1), column2(other.column2)
163  {
164  }
165 
168  {
169  column0 = other.column0;
170  column1 = other.column1;
171  column2 = other.column2;
172  return *this;
173  }
174 
177  {
178  return PxMat33(PxVec3(d.x, 0.0f, 0.0f), PxVec3(0.0f, d.y, 0.0f), PxVec3(0.0f, 0.0f, d.z));
179  }
180 
185  {
186  return column0 == m.column0 && column1 == m.column1 && column2 == m.column2;
187  }
188 
191  {
192  const PxVec3 v0(column0.x, column1.x, column2.x);
193  const PxVec3 v1(column0.y, column1.y, column2.y);
194  const PxVec3 v2(column0.z, column1.z, column2.z);
195 
196  return PxMat33(v0, v1, v2);
197  }
198 
201  {
202  const float det = getDeterminant();
203  PxMat33 inverse;
204 
205  if(det != 0)
206  {
207  const float invDet = 1.0f / det;
208 
209  inverse.column0.x = invDet * (column1.y * column2.z - column2.y * column1.z);
210  inverse.column0.y = invDet * -(column0.y * column2.z - column2.y * column0.z);
211  inverse.column0.z = invDet * (column0.y * column1.z - column0.z * column1.y);
212 
213  inverse.column1.x = invDet * -(column1.x * column2.z - column1.z * column2.x);
214  inverse.column1.y = invDet * (column0.x * column2.z - column0.z * column2.x);
215  inverse.column1.z = invDet * -(column0.x * column1.z - column0.z * column1.x);
216 
217  inverse.column2.x = invDet * (column1.x * column2.y - column1.y * column2.x);
218  inverse.column2.y = invDet * -(column0.x * column2.y - column0.y * column2.x);
219  inverse.column2.z = invDet * (column0.x * column1.y - column1.x * column0.y);
220 
221  return inverse;
222  }
223  else
224  {
225  return PxMat33(PxIdentity);
226  }
227  }
228 
231  {
232  return column0.dot(column1.cross(column2));
233  }
234 
237  {
238  return PxMat33(-column0, -column1, -column2);
239  }
240 
243  {
244  return PxMat33(column0 + other.column0, column1 + other.column1, column2 + other.column2);
245  }
246 
249  {
250  return PxMat33(column0 - other.column0, column1 - other.column1, column2 - other.column2);
251  }
252 
254  PX_CUDA_CALLABLE PX_INLINE const PxMat33 operator*(float scalar) const
255  {
256  return PxMat33(column0 * scalar, column1 * scalar, column2 * scalar);
257  }
258 
259  friend PxMat33 operator*(float, const PxMat33&);
260 
263  {
264  return transform(vec);
265  }
266 
267  // a <op>= b operators
268 
271  {
272  // Rows from this <dot> columns from other
273  // column0 = transform(other.column0) etc
274  return PxMat33(transform(other.column0), transform(other.column1), transform(other.column2));
275  }
276 
279  {
280  column0 += other.column0;
281  column1 += other.column1;
282  column2 += other.column2;
283  return *this;
284  }
285 
288  {
289  column0 -= other.column0;
290  column1 -= other.column1;
291  column2 -= other.column2;
292  return *this;
293  }
294 
297  {
298  column0 *= scalar;
299  column1 *= scalar;
300  column2 *= scalar;
301  return *this;
302  }
303 
306  {
307  *this = *this * other;
308  return *this;
309  }
310 
312  PX_CUDA_CALLABLE PX_FORCE_INLINE float operator()(unsigned int row, unsigned int col) const
313  {
314  return (*this)[col][row];
315  }
316 
318  PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator()(unsigned int row, unsigned int col)
319  {
320  return (*this)[col][row];
321  }
322 
323  // Transform etc
324 
327  {
328  return column0 * other.x + column1 * other.y + column2 * other.z;
329  }
330 
333  {
334  return PxVec3(column0.dot(other), column1.dot(other), column2.dot(other));
335  }
336 
338  {
339  return &column0.x;
340  }
341 
343  {
344  return (&column0)[num];
345  }
346  PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3& operator[](unsigned int num) const
347  {
348  return (&column0)[num];
349  }
350 
351  // Data, see above for format!
352 
353  PxVec3 column0, column1, column2; // the three base vectors
354 };
355 
356 // implementation from PxQuat.h
358 {
359  if(m.column2.z < 0)
360  {
361  if(m.column0.x > m.column1.y)
362  {
363  float t = 1 + m.column0.x - m.column1.y - m.column2.z;
364  *this = PxQuat(t, m.column0.y + m.column1.x, m.column2.x + m.column0.z, m.column1.z - m.column2.y) *
365  (0.5f / PxSqrt(t));
366  }
367  else
368  {
369  float t = 1 - m.column0.x + m.column1.y - m.column2.z;
370  *this = PxQuat(m.column0.y + m.column1.x, t, m.column1.z + m.column2.y, m.column2.x - m.column0.z) *
371  (0.5f / PxSqrt(t));
372  }
373  }
374  else
375  {
376  if(m.column0.x < -m.column1.y)
377  {
378  float t = 1 - m.column0.x - m.column1.y + m.column2.z;
379  *this = PxQuat(m.column2.x + m.column0.z, m.column1.z + m.column2.y, t, m.column0.y - m.column1.x) *
380  (0.5f / PxSqrt(t));
381  }
382  else
383  {
384  float t = 1 + m.column0.x + m.column1.y + m.column2.z;
385  *this = PxQuat(m.column1.z - m.column2.y, m.column2.x - m.column0.z, m.column0.y - m.column1.x, t) *
386  (0.5f / PxSqrt(t));
387  }
388  }
389 }
390 
391 #if !PX_DOXYGEN
392 } // namespace physx
393 #endif
394 
396 #endif // #ifndef PXFOUNDATION_PXMAT33_H
Definition: GuContactBuffer.h:37
PX_CUDA_CALLABLE PX_INLINE PxMat33(PxZERO r)
zero constructor
Definition: PxMat33.h:106
Definition: Px.h:84
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat33 &m) const
returns true if the two matrices are exactly equal
Definition: PxMat33.h:184
PX_CUDA_CALLABLE PX_INLINE PxMat33 & operator-=(const PxMat33 &other)
Equals-sub.
Definition: PxMat33.h:287
PX_CUDA_CALLABLE PX_INLINE const PxMat33 operator-() const
Unary minus.
Definition: PxMat33.h:236
PX_CUDA_CALLABLE PX_INLINE PxMat33(PxIDENTITY r)
identity constructor
Definition: PxMat33.h:99
#define PX_FORCE_INLINE
Definition: PxPreprocessor.h:364
This is a quaternion class. For more information on quaternion mathematics consult a mathematics sour...
Definition: PxQuat.h:49
PxZERO
Definition: Px.h:76
PX_CUDA_CALLABLE PX_INLINE const PxMat33 operator-(const PxMat33 &other) const
Subtract.
Definition: PxMat33.h:248
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 & operator[](unsigned int num)
Definition: PxMat33.h:342
PX_CUDA_CALLABLE PX_INLINE PxMat33 & operator*=(const PxMat33 &other)
Equals matrix multiplication.
Definition: PxMat33.h:305
float z
Definition: PxQuat.h:395
PX_CUDA_CALLABLE PX_INLINE PxMat33(const PxMat33 &other)
Copy constructor.
Definition: PxMat33.h:161
static PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator*(float f, const PxVec2 &v)
Definition: PxVec2.h:337
PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSqrt(float a)
Square root.
Definition: PxMath.h:144
PX_CUDA_CALLABLE PX_INLINE const PxVec3 transformTranspose(const PxVec3 &other) const
Transform vector by matrix transpose, v&#39; = M^t*v.
Definition: PxMat33.h:332
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33 & operator=(const PxMat33 &other)
Assignment operator.
Definition: PxMat33.h:167
PX_CUDA_CALLABLE static PX_INLINE const PxMat33 createDiagonal(const PxVec3 &d)
Construct from diagonal, off-diagonals are zero.
Definition: PxMat33.h:176
float y
Definition: PxVec3.h:381
PX_CUDA_CALLABLE PX_INLINE PxMat33(float values[])
Construct from float[9].
Definition: PxMat33.h:124
PX_CUDA_CALLABLE PX_INLINE const PxMat33 operator+(const PxMat33 &other) const
Add.
Definition: PxMat33.h:242
float w
Definition: PxQuat.h:395
PX_CUDA_CALLABLE PX_FORCE_INLINE float operator()(unsigned int row, unsigned int col) const
Element access, mathematical way!
Definition: PxMat33.h:312
float x
Definition: PxQuat.h:395
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 transform(const PxVec3 &other) const
Transform vector by matrix, equal to v&#39; = M*v.
Definition: PxMat33.h:326
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat()
Default constructor, does not do any initialization.
Definition: PxQuat.h:55
PxVec3 column2
Definition: PxMat33.h:353
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33 operator*(const PxMat33 &other) const
Matrix multiplication.
Definition: PxMat33.h:270
3x3 matrix class
Definition: PxMat33.h:90
PX_CUDA_CALLABLE PX_INLINE PxMat33 & operator*=(float scalar)
Equals scalar multiplication.
Definition: PxMat33.h:296
PX_CUDA_CALLABLE PX_INLINE void PX_UNUSED(T const &)
Definition: PxPreprocessor.h:479
PX_CUDA_CALLABLE PX_INLINE const PxMat33 getInverse() const
Get the real inverse.
Definition: PxMat33.h:200
PxVec3 column0
Definition: PxMat33.h:353
PX_CUDA_CALLABLE PxMat33(const PxVec3 &col0, const PxVec3 &col1, const PxVec3 &col2)
Construct from three base vectors.
Definition: PxMat33.h:112
PX_CUDA_CALLABLE PX_INLINE const PxVec3 operator*(const PxVec3 &vec) const
Matrix vector multiplication (returns &#39;this->transform(vec)&#39;)
Definition: PxMat33.h:262
float y
Definition: PxQuat.h:395
PxIDENTITY
Definition: Px.h:82
PX_CUDA_CALLABLE PX_FORCE_INLINE float & operator()(unsigned int row, unsigned int col)
Element access, mathematical way!
Definition: PxMat33.h:318
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33(const PxQuat &q)
Construct from a quaternion.
Definition: PxMat33.h:132
PX_CUDA_CALLABLE PX_FORCE_INLINE PxMat33()
Default constructor.
Definition: PxMat33.h:94
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 & operator[](unsigned int num) const
Definition: PxMat33.h:346
PX_CUDA_CALLABLE PX_INLINE float getDeterminant() const
Get determinant.
Definition: PxMat33.h:230
PX_CUDA_CALLABLE PX_INLINE const PxMat33 operator*(float scalar) const
Scalar multiplication.
Definition: PxMat33.h:254
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxMat33 getTranspose() const
Get transposed matrix.
Definition: PxMat33.h:190
float z
Definition: PxVec3.h:381
PxVec3 column1
Definition: PxMat33.h:353
PX_CUDA_CALLABLE PX_INLINE PxMat33(float r)
constructor from a scalar, which generates a multiple of the identity matrix
Definition: PxMat33.h:118
#define PX_INLINE
Definition: PxPreprocessor.h:349
#define PX_CUDA_CALLABLE
Definition: PxPreprocessor.h:473
PX_CUDA_CALLABLE PX_INLINE PxMat33 & operator+=(const PxMat33 &other)
Equals-add.
Definition: PxMat33.h:278
3 Element vector class.
Definition: PxVec3.h:49
PX_CUDA_CALLABLE PX_FORCE_INLINE const float * front() const
Definition: PxMat33.h:337
float x
Definition: PxVec3.h:381